

The manufacturer may use the mark:

Valid until September 5, 2017. Revision 1.8 September 5, 2014

Certificate / Certificat

Zertifikat / 合格証

ROS 061218 C001

exida hereby confirms that the:

3051S Pressure Transmitter

Software Revision 7.0 and Above

Rosemount Inc. (an Emerson Process Management company) Chanhassen, MN - USA

Has been assessed per the relevant requirements of:

IEC 61508: 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type B Element

SIL 2@HFT=0 SIL 3@HFT=1, Route 1_H For models where SFF ≥ 90%

SIL 2@HFT=0 SIL 3@HFT=1, Route 2_H

PFD_{AVG} and Architecture Constraints must be verified for each application

Safety Function:

The Rosemount 3051S Pressure Transmitter will measure Pressure/Level/Flow within the stated safety accuracy.

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

Michael Wedff
Evaluating Assessor

William Myoth

Certifying Assessor

Rosemount 3051S Pressure Transmitter

Certificate / Certificat / Zertifikat / 合格証

ROS 061218 C001

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type B Element SIL 2@HFT=0 SIL 3@HFT=1, Route 1_H For models where SFF ≥ 90%

SIL 2@HFT=0 SIL 3@HFT=1, Route 2_H

PFD_{AVG} and Architecture Constraints must be verified for each application

Systematic Capability:

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints for each element.

IEC 61508 Failure Rates in FIT1

Route 1_H Table

111 111 111 1111							
Device	λ_{SD}	λ _{SU}	λ_{DD}	λ _{DU}	SFF		
3051S 4-20mA HART Pressure Transmitter: Coplanar Differential & Coplanar Gage	0	82	274	40	90%		
3051S 4-20mA HART Pressure Transmitter: Coplanar Absolute, In-line Gage & In-line Absolute	0	80	260	37	90%		

Route 2_H Table²

Device	λ _{SD}	λѕυ	λ_{DD}	λ _{DU}			
3051S 4-20mA HART Pressure Transmitter: Coplanar Differential & Coplanar Gage	0	82	274	40			
3051S 4-20mA HART Pressure Transmitter: Coplanar Absolute, In-line Gage & In-line Absolute	0	80	260	37			
3051S Flowmeter based on 1195, 405, or 485 Primaries							
3051S 4-20mA HART Flowmeter Series ³	0	90	274	51			
3051S Level Transmitter: (w/o additional Seal)							
3051S 4-20mA HART Pressure Transmitter: Coplanar Differential & Coplanar Gage	0	82	274	74			
3051S Transmitter with Remote Seals ⁴							

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFD_{AVG} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each subsystem must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

The following documents are a mandatory part of this certification:

Assessment Report: ROS 13/01-010 R001 V2 R1

Safety Manual: 00809-0100-4007

¹FIT = 1 failure / 10⁹ hours

 ^2SFF not required for devices certified using Route 2_H data. For information detailing the Route 2_H approach as defined by IEC 61508-2, see Technical Document entitled "Route 2_H SIL Verification for Rosemount Type B Transmitters with Type A Components".

³Refer to ROS 13/04-008 R001 V1R0 for the Flowmeter FMEDA report for models that are excluded.

⁴Refer to the Remote Seal (ROS 1105075 R001 V1R3) FMEDA report for the additional failure rates to use when using with attached Remote Seals, or use exSILentia.

